skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "DeRosa, Marc"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We describe, test, and apply a technique to incorporate full-Sun, surface flux evolution into an MHD model of the global solar corona. Requiring only maps of the evolving surface flux, our method is similar to that of Lionello et al., but we introduce two ways to correct the electric field at the lower boundary to mitigate spurious currents. We verify the accuracy of our procedures by comparing to a reference simulation, driven with known flows and electric fields. We then present a thermodynamic MHD calculation lasting one solar rotation driven by maps from the magnetic flux evolution model of Schrijver & DeRosa. The dynamic, time-dependent nature of the model corona is illustrated by examining the evolution of the open flux boundaries and forward-modeled EUV emission, which evolve in response to surface flows and the emergence and cancellation flux. Although our main goal is to present the method, we briefly investigate the relevance of this evolution to properties of the slow solar wind, examining the mapping of dipped field lines to the topological signatures of the “S-Web” and comparing charge state ratios computed in the time-dependently driven run to a steady-state equivalent. Interestingly, we find that driving on its own does not significantly improve the charge state ratios, at least in this modest resolution run that injects minimal helicity. Still, many aspects of the time-dependently driven model cannot be captured with traditional steady-state methods, and such a technique may be particularly relevant for the next generation of solar wind and coronal mass ejection models. 
    more » « less
  2. Abstract We present in this Letter the first global comparison between traditional line-tied steady-state magnetohydrodynamic models and a new, fully time-dependent thermodynamic magnetohydrodynamic simulation of the global corona. To approximate surface magnetic field distributions and magnitudes around solar minimum, we use the Lockheed Evolving Surface-Flux Assimilation Model to obtain input maps that incorporate flux emergence and surface flows over a full solar rotation, including differential rotation and meridional flows. Each time step evolves the previous state of the plasma with a new magnetic field input boundary condition, mimicking photospheric driving on the Sun. We find that this method produces a qualitatively different corona compared to steady-state models. The magnetic energy levels are higher in the time-dependent model, and coronal holes evolve more along the following edge than they do in steady-state models. Coronal changes, as illustrated with forward-modeled emission maps, evolve on longer timescales with time-dependent driving. We discuss implications for active and quiet Sun scenarios, solar wind formation, and widely used steady-state assumptions like potential field source surface calculations. 
    more » « less
  3. Abstract We have developed a comprehensive catalog of the variable differential rotation measured near the solar photosphere. This catalog includes measurements of these flows obtained using several techniques: direct Doppler, granule tracking, magnetic pattern tracking, global helioseismology, as well as both time-distance and ring-diagram methods of local helioseismology. We highlight historical differential rotation measurements to provide context, and thereafter provide a detailed comparison of the MDI-HMI-GONG-Mt. Wilson overlap period (April 2010 – Jan 2011) and investigate the differences between velocities obtained from different techniques and attempt to explain discrepancies. A comparison of the rotation rate obtained by magnetic pattern tracking with the rotation rates obtained using local and global helioseismic techniques shows that magnetic pattern tracking measurements correspond to helioseismic flows located at a depth of 25 to 28 Mm. In addition, we show the torsional oscillation from Sunspot Cycles 23 and 24 and discuss properties that are consistent across measurement techniques. We find that acceleration derived from torsional oscillation is a better indicator of long-term trends in torsional oscillation compared to the residual velocity magnitude. Finally, this analysis will pave the way toward understanding systematic effects associated with various flow measurement techniques and enable more accurate determination of the global patterns of flows and their regular and irregular variations. 
    more » « less
  4. ABSTRACT Whilst intense solar flares are almost always accompanied by a coronal mass ejection (CME), reports on stellar CMEs are rare, despite the frequent detection of stellar ‘super flares’. The torus instability of magnetic flux ropes is believed to be one of the main driving mechanisms of solar CMEs. Suppression of the torus instability, due to a confining background coronal magnetic field that decreases sufficiently slowly with height, may contribute to the lack of stellar CME detection. Here, we use the solar magnetic field as a template to estimate the vertical extent of this ‘torus-stable zone’ (TSZ) above a stellar active region. For an idealized potential field model comprising the fields of a local bipole (mimicking a pair of starspots) and a global dipole, we show that the upper bound of the TSZ increases with the bipole size, the dipole strength, and the source surface radius where the coronal field becomes radial. The boundaries of the TSZ depend on the interplay between the spots’ and the dipole’s magnetic fields, which provide the local- and global-scale confinement, respectively. They range from about half the bipole size to a significant fraction of the stellar radius. For smaller spots and an intermediate dipole field, a secondary TSZ arises at a higher altitude, which may increase the likelihood of ‘failed eruptions’. Our results suggest that the low apparent CME occurrence rate on cool stars is, at least partially, due to the presence of extended TSZs. 
    more » « less
  5. null (Ed.)
  6. This white paper is on the HMCS Firefly mission concept study. Firefly focuses on the global structure and dynamics of the Sun's interior, the generation of solar magnetic fields, the deciphering of the solar cycle, the conditions leading to the explosive activity, and the structure and dynamics of the corona as it drives the heliosphere. 
    more » « less